Riemannsche Flächen

Capa
Springer, 2005 - 325 páginas
0 Críticas
Die Theorie Riemannscher Flächen wird vom Autor als ein Mikrokosmos der Reinen Mathematik dargestellt, in dem Methoden der Topologie und Geometrie, der komplexen und reellen Analysis sowie der Algebra zusammenwirken, um die reichhaltige Struktur dieser Flächen aufzuklären und zu erläutern. Viele Beispiele und Bilder, die in der historischen Entwicklung eine Rolle spielten, ergänzen die Darstellung. Wegen seiner Methodenvielfalt enthält das Buch gleichzeitig Einführungen in die Topologie (Fundamentalgruppe, Überlagerungen, Flächen), in die algebraische Geometrie (Kurven und ihre Singularitäten) und in die Potentialtheorie (Perron-Prinzip). Das vorliegende Buch beruht auf Vorlesungen und Seminaren für Studenten mittlerer und höherer Semester im Anschluß an eine Einführung in die komplexe Funktionentheorie. TOC:Grundlagen.- Tori und elliptische Funktionen.- Fundamentalgruppe und Überlagerungen.- Verzweigte Überlagerungen.- Die J- und l-Funktion.- Algebraische Funktionen.- Differentialformen und Integration.- Divisoren und Abbildungen in projektive Räume.- Ebene Kurven.- Harmonische Funktionen.- Riemannscher Abbildungssatz und Uniformisierung.- Polyederflächen.- Der Satz von Riemann-Roch.- Der Periodentorus.- Die Riemannsche Thetafunktion.

Opinião das pessoas - Escrever uma crítica

Não foram encontradas quaisquer críticas nos locais habituais.

Outras edições - Ver tudo

Referências a este livro

Einführung in die Funktionentheorie
Hermann Weyl
Pré-visualização indisponível - 2008

Informação bibliográfica