Imagens das páginas
PDF
ePub

Commensurable Roots of any Equation.

3. Find the commensurable roots of the equation

24 x3- 26 x2+9x 1=

-

= 0.

Ans.,, and .

4. Find the commensurable roots of the equation

3 x3-14x2+21 x — 10 = 0.

Ans. 1,, and 2.

5. Find the commensurable roots of the equation

8x438349 x2-22x+3=0.

Ans. 1, 1, 1, and 3.

6. Find all the roots of the equation

6x37x239x+630

which has a commensurable root.

Ans., and -251.

7. Find the commensurable roots of the equation 9x630x5+22x4 + 10 x3+17x2-20x+4=0.

Ans. and -2.

Value of Continued Fractions.

CHAPTER IX.

CONTINUED FRACTIONS.

316. A continued fraction is one whose numeratoi is unity, and its denominator an integer increased by a fraction, whose numerator is likewise unity, and which may be a continued fraction.

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][ocr errors][merged small][merged small]

317. Problem. To find the value of a continued fraction which is composed of a finite number of fractions.

Solution. Let the given fraction be

[merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]
[ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small]
[blocks in formation]

An approximate value of this fraction is obviously obtained by omitting all its terms beyond any assumed fraction, and obtaining the value of the resulling fraction, as in the previous article.

[blocks in formation]

and each of these values is easily shown to be more accurate than the preceding; for the second value is what the first becomes by substituting, for the denominator a, the

1

b

more accurate denominator a+ ; the third is what the second becomes by substituting, for the denominator b, the more accurate denominator b +

1

-

; and so on.

C

Approximate Values of Continued Fractions.

320. Theorem. The numerator of any approximate value, as the nth, is obtained from the numerators of the two preceding approximate values, the (n 1)st, and the (n-2)nd, by multiplying the (n − 1)st numerator by the nth denominator contained in the given continued fraction, and adding to the result the numerator of the (n-2)nd approximate value.

The denominator of the nth approximate value is obtained in the same way from the two preceding denominators.

Demonstration. Let the (n-3)rd, (n—2)nd, (n—1)st, and nth approximate values be, respectively,

[blocks in formation]

and let the (n-1)st and the nth denominators, contained in the given continued fraction, be p and q.

We shall suppose the proposition demonstrated for the (n-1)st approximate value, and shall prove that it can thence be continued to the nth value; that is, we shall suppose it proved that

M

[blocks in formation]

PL+K
PL+K

Now it is plain, from the remarks at the end of the preceding article, that the nth value is deduced from the (n—1)st, by changing p into p+; which change, being made in

the preceding value, gives

1

[ocr errors]
[merged small][ocr errors][merged small][merged small][ocr errors][merged small][merged small]
« AnteriorContinuar »