Imagens das páginas
PDF
ePub

While the bones of animals form levers and fulcra for portions of the muscular system, it must never be forgotten that the earth, water, or air form fulcra for the travelling surfaces of animals as a whole. Two sets of fulcra are therefore always to be considered, viz. those represented by the bones, and those represented by the earth, water, or air respectively. The former when acted upon by the muscles produce motion in different parts of the animal (not necessarily progressive motion); the latter when similarly influenced produce locomotion. Locomotion is greatly favoured by the tendency which the body once set in motion has to advance in a straight line. The form, strength, density, and elasticity of the skeleton varies in relation to the bulk and locomotive power of the animal, and to the media in which it is destined to move.

"The number of moveable articulations in a skeleton determines the degree of its mobility within itself; and the kind and number of the articulations of the locomotive organs determine the number and disposition of the muscles acting upon them.

The bones of vertebrated animals, especially those which are entirely terrestrial, are much more elastic, hard, and calculated by their chemical elements to bear the shocks and strains incident to terrestrial progression, than those of the aquatic vertebrata; the bones of the latter being more fibrous and spongy in their texture, the skeleton is more soft and yielding.

The bones of the higher orders of animals are constructed according to the most approved mechanical principles. Thus they are convex externally, concave within, and strengthened by ridges running across their discs, as in the scapular and iliac bones; an arrangement which affords large surfaces for the attachment of the powerful muscles of locomotion. The bones of birds in many cases are not filled with marrow but with air,—a circumstance which insures that they shall be very strong and very light.

In the thigh bones of most animals an angle is formed by the head and neck of the bone with the axis of the body, which prevents the weight of the superstructure coming vertically upon the shaft, converts the bone into an elastic

arch, and renders it capable of supporting the weight of the body in standing, leaping, and in falling from considerable altitudes.

Joints. Where the limbs are designed to move to and fro simply in one plane, the ginglymoid or hinge-joint is applied; and where more extensive motions of the limbs are requisite, the enarthrodial, or ball-and-socket joint, is introduced. These two kinds of joints predominate in the locomotive organs of the animal kingdom.

The enarthrodial joint has by far the most extensive power of motion, and is therefore selected for uniting the limbs to the trunk. It permits of the several motions of the limbs termed pronation, supination, flexion, extension, abduction, adduction, and revolution upon the axis of the limb or bone about a conical area, whose apex is the axis of the head of the bone, and base circumscribed by the distal extremity of the limb."1 The ginglymoid or hinge-joints are for the most part spiral in their nature. They admit in certain cases of a limited degree of lateral rocking. Much attention has been paid to the subject of joints (particularly human ones) by the brothers Weber, Professor Meyer of Zürich, and likewise by Langer, Henke, Meissner, and Goodsir. Langer, Henke, and Meissner succeeded in demonstrating the "screw configuration" of the articular surfaces of the elbow, ankle, and calcaneo-astragaloid joints, and Goodsir showed that the articular surface of the knee-joint consist of a double conical screw combination." The last-named observer also expressed his belief "that articular combinations with opposite windings on opposite sides of the body, similar to those in the knee-joint, exist in the ankle and tarsal, and in the elbow and carpal joints; and that the hip and shoulder joints consist of single threaded couples, but also with opposite windings on opposite sides of the body." I have succeeded in demonstrating a similar spiral configuration in the several bones and joints of the wing of the bat and bird, and in the extremities of most quadrupeds. The bones of animals, particularly the extremities, are, as a rule, twisted levers, and act after the manner of screws. This arrangement enables the higher

66

1 Bishop, op. cit.

animals to apply their travelling surfaces to the media on which they are destined to operate at any degree of obliquity so as to obtain a maximum of support or propulsion with a minimum of slip. If the travelling surfaces of animals did not form screws structurally aud functionally, they could neither seize nor let go the fulcra on which they act with the requisite rapidity to secure speed, particularly in water and air. Ligaments.--The office of the ligaments with respect to locomotion, is to restrict the degree of flexion, extension, and other motions of the limbs within definite limits.

66

Effect of Atmospheric pressure on Limbs.-The influence of atmospheric pressure in supporting the limbs was first noticed. by Dr. Arnott, though it has been erroneously ascribed by Professor Müller to Weber. Subsequent experiments made by Dr. Todd, Mr. Wormald, and others, have fully established the mechanical influence of the air in keeping the mechanism of the joints together. The amount of atmospheric pressure on any joint depends upon the area or surface presented to its influence, and the height of the barometer. According to Weber, the atmospheric pressure on the hip-joint of a man is about 26 lbs. The pressure on the knee-joint is estimated by Dr. Arnott at 60 lbs."1

Active organs of Locomotion. Muscles, their Properties, Arrangement, Mode of Action, etc.-If time and space had permitted, I would have considered it my duty to describe, more or less fully, the muscular arrangements of all the animals whose movements I propose to analyse. This is the more desirable, as the movements exhibited by animals of the higher types are directly referable to changes occurring in their muscular system. As, however, I could not hope to overtake this task within the limits prescribed for the present work, I shall content myself by merely stating the properties of muscles; the manner in which muscles act; and the manner in which they are grouped, with a view to moving the osseous levers which constitute the bony framework or skeleton of the animals to be considered. Hitherto, and by common consent, it has been believed that whereas a flexor muscle is situated on one aspect of a limb, and its correspond1 Bishop, op. cit.

ing extensor on the other aspect, these two muscles must be opposed to and antagonize each other. This belief is founded on what I regard as an erroneous assumption, viz., that muscles have only the power of shortening, and that when one muscle, say the flexor, shortens, it must drag out and forcibly elongate the corresponding extensor, and the converse. This would be a mere waste of power. Nature never works against herself. There are good grounds for believing, as I have stated elsewhere,1 that there is no such thing as antagon

[ocr errors]

FIG. 5. Shows the muscular cycle formed by the biceps (a) or flexor muscle, and the triceps (b) or extensor muscle of the human arm. At i the centripetal or shortening action of the biceps is seen, and at j the centrifugal or elongating action of the triceps (vide arrows). The present figure represents the forearm as flexed upon the arm. As a consequence, the long axes of the sarcous elements or ultimate particles of the biceps (i) are arranged in a more or less horizontal direction; the long axes of the sarcous elements of the triceps (j) being arranged in a nearly vertical direction. When the forearm is extended, the long axes of the sarcous elements of the biceps and triceps are reversed. The present figure shows how the bones of the extremities form levers, and how they are moved by muscular action. e.g., the biceps (a) shortens and the triceps (b) elongates, they cause the forearm and hand (h) to move towards the shoulder (d). If, on the other hand, the triceps (b) shortens and the biceps (a) elongates, they cause the forearm and hand (h) to move away from the shoulder. In these actions the biceps (a) and triceps (b) are the power; the elbow-joint (g) the fulcrum, and the forearm and hand (h) the weight to be elevated or depressed. If the hand repre

If,

sented a travelling surface which operated on the earth, the water, or the air, it is not difficult to understand how, when it was made to move by the action of the muscles of the arm, it would in turn move the body to which it belonged. d Coracoid process of the scapula, from which the internal or short head of the biceps (a) arises. e Insertion of the biceps into the radius. ƒ Long head of the triceps (b). g Insertion of the triceps into the olecranon process of the ulna.-Original.

ism in muscular movements; the several muscles known as flexors and extensors; abductors and adductors; pronators and supinators, being simply correlated. Muscles, when they

1 "Lectures on the Physiology of the Circulation in Plants, in the Lower Animals, and in Man."-Edinburgh Medical Journal for January and February 1873.

act, operate upon bones or something extraneous to themselves, and not upon each other. The muscles are folded round the extremities and trunks of animals with a view to operating in masses. For this purpose they are arranged in cycles, there being what are equivalent to extensor and flexor cycles, abductor and adductor cycles, and pronator and supinator cycles. Within these muscular cycles the bones, or extraneous substances to be moved, are placed, and when one side of a cycle shortens, the other side elongates. Muscles are therefore endowed with a centripetal and centrifugal action. These cycles are placed at every degree of obliquity and even at right angles to each other, but they are so disposed in the bodies and limbs of animals that they always operate consentaneously and in harmony. Vide fig. 5, p. 25.

There are in animals very few simple movements, i.e. movements occurring in one plane and produced by the action of two muscles. Locomotion is for the most part produced by the consentaneous action of a great number of muscles; these or their fibres pursuing a variety of directions. This is particularly true of the movements of the extremities in walking, swimming, and flying.

Muscles are divided into the voluntary, the involuntary, and the mixed, according as the will of the animal can wholly, partly, or in no way control their movements. The voluntary muscles are principally concerned in the locomotion of animals. They are the power which moves the several orders of levers into which the skeleton of an animal resolves itself.

The movements of the voluntary and involuntary muscles are essentially wave-like in character, i.e. they spread from certain centres, according to a fixed order, and in given directions. In the extremities of animals the centripetal or converging muscular wave on one side of the bone to be moved, is accompanied by a corresponding centrifugal or diverging wave on the other side; the bone or bones by this arrangement being perfectly under control and moved to a hair's-breadth. The centripetal or converging, and the centrifugal or diverging waves of force are, as already indicated, correlated.1 Similar remarks may be made regarding the different parts of the body 1 Muscles virtually possess a pulling and pushing power; the pushing

« AnteriorContinuar »