Imagens das páginas
PDF
ePub

We

account for the sun's heat than what can do so. may, for instance, be perfectly certain that it cannot have been caused by chemical action. The most probable theory is that which was first worked out by Helmholtz and Thomson; * and which attributes the heat of the sun to the primeval energy of position possessed by its particles. In other words, it is supposed that these particles originally existed at a great distance from each other, and that, being endowed with the force of gravitation, they have since gradually come together, while in this process heat has been generated just as it would be if a stone were dropped from the top of a cliff towards the earth.

208. Nor is this case wholly imaginary, but we have some reason for thinking that it may still be in operation in the case of certain nebulæ which, both in their constitution as revealed by the spectroscope, and in their general appearance, impress the beholder with the idea that they are not yet fully condensed into their ultimate shape and size.

If we allow that by this means our luminary has obtained his wonderful store of high-class energy, we have yet to inquire to what extent this operation is going on at the present moment. Is it only a thing of the past, or is it a thing also of the present? I think we may reply that the sun cannot be condensing very fast, at least, within historical times. For if the

Mayer and Waterston seem first to have caught the rudiments of this idea.

sun were sensibly larger than at present his total eclipse by the moon would be impossible. Now, such eclipses have taken place, at any rate, for several thousands of years. Doubtless a small army of meteors may be falling into our luminary, which would by this fall tend to augment his heat; yet the supply derived from this source must surely be insignificant. But if the sun be not at present condensing so fast as to derive any sufficient heat from this process, and if his energy be very sparingly recruited from without, it necessarily follows that he is in the position of a man whose expenditure exceeds his income. He is living upon his capital, and is destined to share the fate of all who act in a similar manner. We must, therefore, contemplate a future period when he will be poorer in energy than he is at present, and a period still further in the future when he will altogether cease to shine.

Probable Fate of the Universe.

209. If this be the fate of the high temperature energy of the universe, let us think for a moment what will happen to its visible energy. We have spoken already about a medium pervading space, the office of which appears to be to degrade and ultimately extinguish all differential motion, just as it tends to reduce and ultimately equalize all difference of temperature. Thus the universe would ultimately become an equally heated mass, utterly worthless as far as the production of work is concerned, since such production depends upon difference of temperature.

Although, therefore, in a strictly mechanical sense, there is a conservation of energy, yet, as regards usefulness or fitness for living beings, the energy of the universe is in process of deterioration. Universally diffused heat forms what we may call the great wasteheap of the universe, and this is growing larger year by year. At present it does not sensibly obtrude itself, but who knows that the time may not arrive when we shall be practically conscious of its growing bigness?

210. It will be seen that in this chapter we have regarded the universe, not as a collection of matter, but rather as an energetic agent-in fact, as a lamp. Now, it has been well pointed out by Thomson, that looked at in this light, the universe is a system that had a beginning and must have an end; for a process of degradation cannot be eternal. If we could view the universe as a candle not lit, then it is perhaps conceivable to regard it as having been always in existence; but if we regard it rather as a candle that has been lit, we become absolutely certain that it cannot have been burning from eternity, and that a time will come when it will cease to burn. We are led to look to a beginning in which the particles of matter were in a diffuse chaotic state, but endowed with the power of gravitation, and we are led to look to an end in which the whole universe will be one equally heated inert mass, and from which everything like life or motion or beauty will have utterly gone away.

CHAPTER VI.

THE POSITION OF LIFE.

211. WE have hitherto confined ourselves almost entirely to a discussion of the laws of energy, as these affect inanimate matter, and have taken little or no account of the position of life. We have been content very much to remain spectators of the contest, apparently forgetful that we are at all concerned in the issue. But the conflict is not one which admits of on-lookers,—it is a universal conflict in which we must all take our share. It may not, therefore, be amiss if we endeavour to ascertain, as well as we can, our true position.

Twofold nature of Equilibrium.

212. One of our earliest mechanical lessons is on the twofold nature of equilibrium. We are told that this may be of two kinds, stable and unstable, and a very good illustration of these two kinds is furnished by an egg. Let us take a smooth level table, and place an egg upon it; we all know in what manner the egg will lie

155

on the table. It will remain at rest, that is to say, it will be in equilibrium; and not only so, but it will be in stable equilibrium. To prove this, let us try to displace it with our finger, and we shall find that when we remove the pressure the egg will speedily return to its previous position, and will come to rest after one or two oscillations. Furthermore, it has required a sensible expenditure of energy to displace the egg. All this we express by saying that the egg is in stable equilibrium.

Mechanical Instability.

213. And now let us try to balance the egg upon its longer axis. Probably, a sufficient amount of care will enable us to achieve this also. But the operation is a difficult one, and requires great delicacy of touch, and even after we have succeeded we do not know how long our success may last. The slightest impulse from without, the merest breath of air, may be sufficient to overturn the egg, which is now most evidently in unstable equilibrium. If the egg be thus balanced at the very edge of the table, it is quite probable that in a few minutes it may topple over upon the floor; it is what we may call an even chance whether it will do so, or merely fall upon the table. Not that mere chance has anything to do with it, or that its movements are without a cause, but we mean that its movements are decided by some external impulse so exceedingly small as to be utterly beyond our powers of observation. In fact, before making the trial

« AnteriorContinuar »