Imagens das páginas
PDF
ePub

an absurd conclusion-hence he concludes that they are true. Now, we may adopt a method somewhat similar with regard to our principle, only instead of supposing it untrue, let us suppose it true. It may then be shown that, if it be true, under certain test conditions we ought to obtain certain results-for instance, if we increase the pressure, we ought to lower the freezing point of water. Well, we make the experiment, and find that, in point of fact, the freezing point of water is lowered by increasing the pressure, and we have thus derived an argument in favour of the conservation of energy.

119. Or again, if the laws of energy are true, it may be shown that, whenever a substance contracts when heated, it will become colder instead of hotter by compression. Now, we know that ice-cold water, or water just a little above its freezing point, contracts instead of expanding up to 4° C.; and Sir William Thomson has found, by experiment, that water at this temperature is cooled instead of heated by sudden compression. Indiarubber is another instance of this relation between these. two properties, for if we stretch a string of india-rubber it gets hotter instead of colder, that is to say, its temperature rises by extension, and gets lower by contraction ; and again, if we heat the string, we find that it contracts in length instead of expanding like other substances as its temperature increases.

120. Numberless instances occur in which we are

enabled to predict what will happen by assuming the truth of the laws of energy; in other words, these laws are proved to be true in all cases where we can put them to the test of rigorous experiment, and probably we can have no better proof than this of the truth of such a principle. We shall therefore proceed upon the assumption that the conservation of energy holds true in all cases, and give our readers a list of the various transmutations of this subtle agent as it goes backwards and forwards from one abode to another, making, meanwhile, sundry remarks that may tend, we trust, to convince our readers of the truth of our assumption.

CHAPTER IV.

TRANSMUTATIONS OF ENERGY.

Energy of Visible Motion.

121. LET us begin our list of transmutations with the energy of visible motion. This is changed into energy of position when a stone is projected upwards above the earth, or, to take a case precisely similar, when a planet or a comet goes from perihelion, or its position nearest the sun, to aphelion, or its position furthest from the sun. We thus see why a heavenly body should move fastest at perihelion, and slowest at aphelion. If, however, a planet were to move round the sun in an orbit exactly circular, its velocity would be the same at all the various points of this orbit, because there would be no change in its distance from the centre of attraction, and therefore no transmutation of energy.

122. We have already (Arts. 108, 109) said that the energy in an oscillating or vibrating body is alternately that of actual motion, and that of position. In this respect, therefore, a pendulum is similar to a comet or heavenly body with an elliptical orbit. Nevertheless the

change of energy is generally more complete in a pendulum or vibrating body than it is in a heavenly body; for in a pendulum, when at its lowest point, the energy is entirely that of actual motion, while at its upper point it is entirely that of position. Now, in a heavenly body we have only a lessening, but not an entire destruction, of the velocity, as the body passes from perihelion to aphelion—that is to say, we have only a partial conversion of the one kind of energy into the other.

123. Let us next consider the change of actual visible energy into absorbed heat. This takes place in all cases of friction, percussion, and resistance. In friction, for instance, we have the conversion of work or energy into heat, which is here produced through the rubbing of surfaces against each other; and Davy has shown that two pieces of ice, both colder than the freezing point, may be melted by friction. In percussion, again, we have the energy of the blow converted into heat; while, in the case of a meteor or cannon ball passing through the air with great velocity, we have the loss of energy of the meteor or cannon ball through its contact with the air, and at the same time the production of heat on account of this resistance.

The resistance need not be atmospheric, for we may set the cannon ball to pierce through wooden planks or through sand, and there will equally be a production of heat on account of the resistance offered by the wooden planks or by the sand to the motion of the ball. We

may even generalize still further, and assert that whenever the visible momentum of a body is transferred to a larger mass, there is at the same time the conversion of visible energy into heat.

124. A little explanation will be required to make this point clear.

The third law of motion tells us that action and reaction are equal and opposite, so that when two bodies come into collision the forces at work generate equal and opposite quantities of momentum. We shall best see the meaning of this law by a numerical example, bearing in mind that momentum means the product of mass into velocity.

For instance, let us suppose that an inelastic body of mass 10 and velocity 20 strikes directly another inelastic body of mass 15 and velocity 15, the direction of both motions being the same.

Now, it is well known that the united

impact, be moving with the velocity 17.

=

mass will, after

What, then, has been the influence of the forces developed by collision? The body of greater velocity had before impact a momentum 10 x 20 = 200, while its momentum after impact is only 10 x 17 170; it has therefore suffered a loss of 30 units as regards momentum, or we may consider that a momentum of 30 units has been impressed upon it in an opposite direction to its previous motion. On the other hand, the body of smaller velocity had before impact a momentum 15 × 15 225, while after

=

« AnteriorContinuar »