Imagens das páginas
PDF
ePub

logical variety and those that survived from the preceding year, and also the fact that the new physiological varieties would diminish year by year. He finds the result of a rigidly accurate calculation to be, that it will take six years instead of three for additions to the physiological variety to cease, as shown in the following table:

[merged small][ocr errors][merged small][merged small][merged small][ocr errors][ocr errors][merged small][ocr errors][ocr errors][merged small][merged small][ocr errors][ocr errors][merged small][ocr errors][ocr errors][merged small][merged small][ocr errors][ocr errors][merged small][ocr errors][ocr errors][merged small][merged small][ocr errors][ocr errors][ocr errors][merged small][ocr errors][merged small][merged small][ocr errors][merged small][merged small][ocr errors][merged small][ocr errors]

In all subsequent years the proportion of the two varieties will remain unchanged.

In the preceding discussion we have given the theory the advantage of the large proportion of 10 per cent of this very exceptional variety arising in its midst year by year, and we have seen that, even under these favourable conditions, it is unable to increase its numbers much above its starting-point, and that it remains wholly dependent on the continued renewal of the variety for its existence beyond a few years. If it is proposed to get over the difficulty by postulating a larger percentage of the variety annually arising within the species, we shall not affect the law of decrease until we approach equality in the numbers of the two varieties. But with any such increase of the physiological variety the species itself would suffer by the large proportion of sterile unions, and would be at a disadvantage in competition with other species which were fertile throughout. Thus, natural selection will tend to destroy any species having a tendency to sterility among its own members, and will therefore prevent such sterility from becoming the general characteristic of a varying species, which this theory requires.

On the whole, then, it appears clear that no form of infertility or sterility between the individuals of a species, can be increased by natural selection unless correlated with some useful variation, while all infertility not so correlated has a constant tendency to effect its own elimination. But the opposite property, fertility, is of vital importance to every species, and gives the offspring of the individuals which possess it, in consequence of their superior numbers, a greater

chance of survival in the battle of life. It is, therefore, directly under the control of natural selection, which acts both by the self-preservation of fertile and the self-destruction of infertile stocks-except always where correlated as above, when they become useful, and therefore subject to be increased by natural selection.

Summary and Concluding Remarks on Hybridity.

The facts which are of the greatest importance to a comprehension of this very difficult subject are those which show the extreme susceptibility of the reproductive system both in plants and animals. We have seen how both these classes of organisms may be rendered infertile, by a change of conditions which does not affect their general health, by captivity, or by too close interbreeding. We have seen, also, that infertility is frequently correlated with a difference of colour, or with other characters; that it is not proportionate to divergence of structure; that it varies in reciprocal crosses between pairs of the same species; while in the cases of dimorphic and trimorphic plants the different crosses between the same pair of individuals may be fertile or sterile at the same time. appears as if fertility depended on such a delicate adjustment of the male and female elements to each other, that, unless constantly kept up by the preservation of the most fertile individuals, sterility is always liable to arise. This preservation always occurs within the limits of each species, both because fertility is of the highest importance to the continuance of the race, and also because sterility (and to a less extent infertility) is self-destructive as well as injurious to the species.

It

So long therefore as a species remains undivided, and in occupation of a continuous area, its fertility is kept up by natural selection; but the moment it becomes separated, either by geographical or selective isolation, or by diversity of station or of habits, then, while each portion must be kept fertile inter se, there is nothing to prevent infertility arising between the two separated portions. As the two portions will necessarily exist under somewhat different conditions of life, and will usually have acquired some diversity of form and colour-both which circumstances we know to be either the cause of infertility or to be correlated with it, the fact of

some degree of infertility usually appearing between closely allied but locally or physiologically segregated species is exactly what we should expect.

The reason why varieties do not usually exhibit a similar amount of infertility is not difficult to explain. The popular conclusions on this matter have been drawn chiefly from what occurs among domestic animals, and we have seen that the very first essential to their becoming domesticated was that they should continue fertile under changed conditions of life. During the slow process of the formation of new varieties by conscious or unconscious selection, fertility has always been an essential character, and has thus been invariably preserved or increased; while there is some evidence to show that domestication itself tends to increase fertility.

Among plants, wild species and varieties have been more frequently experimented on than among animals, and we accordingly find numerous cases in which distinct species of plants are perfectly fertile when crossed, their hybrid offspring being also fertile inter se. We also find some few examples of the converse fact-varieties of the same species which when crossed are infertile or even sterile.

The idea that either infertility or geographical isolation is absolutely essential to the formation of new species, in order to prevent the swamping effects of intercrossing, has been shown to be unsound, because the varieties or incipient species will, in most cases, be sufficiently isolated by having adopted different habits or by frequenting different stations; while selective association, which is known to be general among distinct varieties or breeds of the same species, will produce an effective isolation even when the two forms occupy the same area.

From the various considerations now adverted to, Mr. Darwin arrived at the conclusion that the sterility or infertility of species with each other, whether manifested in the difficulty of obtaining first crosses between them or in the sterility of the hybrids thus obtained, is not a constant or necessary result of specific difference, but is incidental on unknown peculiarities of the reproductive system. These peculiarities constantly tend to arise under changed conditions owing to the extreme susceptibility of that system, and they

are usually correlated with variations of form or of colour. Hence, as fixed differences of form and colour, slowly gained by natural selection in adaptation to changed conditions, are what essentially characterise distinct species, some amount of infertility between species is the usual result.

Here the problem was left by Mr. Darwin; but we have shown that its solution may be carried a step further. If we accept the association of some degree of infertility, however slight, as a not unfrequent accompaniment of the external differences which always arise in a state of nature between varieties and incipient species, it has been shown that natural selection has power to increase that infertility just as it has power to increase other favourable variations. Such an in crease of infertility will be beneficial, whenever new species arise in the same area with the parent form; and we thus see how, out of the fluctuating and very unequal amounts of infertility correlated with physical variations, there may have arisen that larger and more constant amount which appears usually to characterise well-marked species.

The great body of facts of which a condensed account has been given in the present chapter, although from an experimental point of view very insufficient, all point to the general conclusion we have now reached, and afford us a not unsatisfactory solution of the great problem of hybridism in relation to the origin of species by means of natural selection. Further experimental research is needed in order to complete the elucidation of the subject; but until these additional facts are forthcoming no new theory seems required for the explanation of the phenomena.

CHAPTER VIII

THE ORIGIN AND USES OF COLOUR IN ANIMALS

The Darwinian theory threw new light on organic colour-The problem to be solved-The constancy of animal colour indicates utility-Colour and environment—Arctic animals white-Exceptions prove the ruleDesert, forest, nocturnal, and oceanic animals-General theories of animal colour-Variable protective colouring-Mr. Poulton's experiments-Special or local colour adaptations-Imitation of particular objects--How they have been produced-Special protective colouring of butterflies-Protective resemblance among marine animals-Protection by terrifying enemies-Alluring coloration--The coloration of birds' eggs--Colour as a means of recognition-Summary of the preceding exposition-Influence of locality or of climate on colourConcluding remarks.

AMONG the numerous applications of the Darwinian theory in the interpretation of the complex phenomena presented by the organic world, none have been more successful, or are more interesting, than those which deal with the colours of animals and plants. To the older school of naturalists colour was a trivial character, eminently unstable and untrustworthy in the determination of species; and it appeared to have, in most cases, no use or meaning to the objects which displayed it. bright and often gorgeous coloration of insect, bird, or flower, was either looked upon as having been created for the enjoyment of mankind, or as due to unknown and perhaps undiscoverable laws of nature.

The

But the researches of Mr. Darwin totally changed our point of view in this matter. He showed, clearly, that some of the colours of animals are useful, some hurtful to them; and he believed that many of the most brilliant colours were developed by sexual choice; while his great general principle, that all

« AnteriorContinuar »