Imagens das páginas

of the wind observed during twelve hours at the Ben Nevis observatory, while the velocity sometimes rises to 120 miles an hour. A twelve hours' gale might, therefore, carry light seeds a thousand miles as easily and certainly as it could carry quartz-grains of much greater specific gravity, rotundity, and smoothness, 500 or even 100 miles; and it is difficult even to imagine a sufficient reason why they should not be so carried—perhaps very rarely and under exceptionally favourable conditions,—but this is all that is required.

As regards the second objection, it has been observed that orchidea, which have often exceedingly small and light seeds, are remarkably absent from oceanic islands. This, however, may be very largely due to their extreme specialisation and dependence on insect agency for their fertilisation ; while the fact that they do occur in such very remote islands as the Azores, Tahiti, and the Sandwich Islands, proves that they must have once reached these localities either by the agency of birds or by transmission through the air; and the facts I have given above render the latter mode at least as probable as the former. Sir Joseph Hooker remarks on the composite plant of Kerguelen Island (Cotula plumosa) being found also on Lord Auckland and MacQuarrie Islands, and yet having no pappus, while other species of the genus possess it. This is certainly remarkable, and proves that the plant must have, or once have had, some other means of dispersal across wide oceans. One of the most widely dispersed species in the whole world (Sonchus oleraceus) possesses pappus, as do four out of five of the species which are common to Europe and New Zealand, all of which have a very wide distribution. The same author remarks on the limited area occupied by most species of Compositæ, notwithstanding their facilities for dispersal by means of their feathered seeds; but it has been already shown that limitations of area are almost always due to the competition of allied forms, facilities for dispersal being only one of many factors in determining the wide range of species. It is, however, a specially important factor in the case of the inhabitants of remote oceanic islands, since, whether they are peculiar species or not, they or their remote ancestors must at some time or other have reached their present position by natural means.

1 It seems quite possible that the absence of pappus in this case is a recent adaptation, and that it has been brought about by causes similar to those which have reduced or aborted the wings of insects in oceanic islands. For when a plant has once reached one of the storm-swept islands of the southern ocean, the pappus will be injurious for the same reason that the wings of insects are injurious, since it will lead to the seeds being blown out to sea and destroyed. The seeds which are heaviest and have least pappus will have the best chance of falling on the ground and remaining there to germinate, and this process of selection might rapidly lead to the entire disappearance of the pappus.

I have already shown elsewhere, that the flora of the Azores strikingly supports the view of the species having been introduced by aerial transmission only, that is, by the agency of birds and the wind, because all plants that could not possibly have been carried by these means are absent. In the same way we may account for the extreme rarity of Leguminosæ in all oceanic islands. Mr. Hemsley, in his Report on Insular Floras, says that they “are wanting in a large number of oceanic islands where there is no true littoral flora,” as St. Helena, Juan Fernandez, and all the islands of the South Atlantic and South Indian Oceans. Even in the tropical islands, such as Mauritius and Bourbon, there are no endemic species, and very few in the Galapagos and the remoter Pacific Islands. All these facts are quite in accordance with the absence of facilities for transmission through the air, either by birds or the wind, owing to the comparatively large size and weight of the seeds; and an additional proof is thus afforded of the extreme rarity of the successful floating of seeds for great distances across the ocean.2

Explanation of North Temperate Plants in the Southern Hemisphere.

If we now admit that many seeds which are either minute in size, of thin texture or wavy form, or so fringed or margined as to afford a good hold to the air, are capable of being carried for many hundreds of miles by exceptionally

i See Island Life, p. 251.

. Mr. Hemsley suggests that it is not so much the difficulty of transmission by floating, as the bad conditions the seeds are usually exposed to when they reach land. Many, even if they germinate, are destroyed by the waves, as Burchell noticed at St. Helena ; while even a flat and sheltered shore would be an unsuitable position for many inland plants. Air-borne seeds, on the other hand, may be carried far inland, and so scattered that some of them are likely to reach suitable stations.

violent and long-continued gales of wind, we shall not only be better able to account for the floras of some of the remotest oceanic islands, but shall also find in the fact a sufficient explanation of the wide diffusion of many genera, and even species, of arctic and north temperate plants in the southern hemisphere or on the summits of tropical mountains. Nearly fifty of the flowering plants of Tierra-del-Fuego are found also in North America or Europe, but in no intermediate country; while fiftyeight species are common to New Zealand and Northern Europe; thirty-eight to Australia, Northern Europe, and Asia ; and no less than seventy-seven common to New Zealand, Australia, and South America.1 On lofty mountains far removed from each other, identical or closely allied plants often occur. Thus the fine Primula imperialis of a single mountain peak in Java has been found (or a closely allied species) in the Himalayas; and many other plants of the high mountains of Java, Ceylon, and North India are either identical or closely allied forms. So, in Africa, some species, found on the summits of the Cameroons and Fernando Po in West Africa, are closely allied to species in the Abyssinian highlands and in Temperate Europe ; while other Abyssinian and Cameroons species have recently been found on the mountains of Madagascar. Some peculiar Australian forms have been found represented on the summit of Kini Balu in Borneo. Again, on the summit of the Organ mountains in Brazil there are species allied to those of the Andes, but not found in the intervening lowlands.

No Proof of Recent Lower Temperature in the Tropics. Now all these facts, and numerous others of like character, were supposed by Mr. Darwin to be due to a lowering of temperature during glacial epochs, which allowed these temperate forms to migrate across the intervening tropical lowlands. But any such change within the epoch of existing species is almost inconceivable. In the first place, it would necessitate the extinction of much of the tropical flora (and with it of the insect life), because without such extinction alpine herbaceous plants could certainly never spread over tropical forest lowlands; and, in the next place, there is not a particle of direct evidence that any such lowering of temperature in intertropical lowlands ever took place. The only alleged evidence of the kind is that adduced by the late Professor Agassiz and Mr. Hartt; but I am informed by my friend, Mr. J. C. Branner (now Professor of Geology at the Stanford University, California, U.S.), who succeeded Mr. Hartt, and spent several years completing the geological survey of Brazil, that the supposed moraines and glaciated granite rocks near Rio Janeiro, as well as the so-called boulder-clay of the same region, are entirely explicable as the results of sub-aerial denudation and weathering, and that there is no proof whatever of glaciation in any part of Brazil.

1 For fuller particulars, see Sir J. Hooker's Introduction to Florus of New Zealand am sustralia, and a summary in my Island Life, chaps. xxii.

Lower Temperature not needed to Explain the Facts. But any such vast physical change as that suggested by Darwin, involving as it does such tremendous issues as regards its effects on the tropical fauna and flora of the whole world, is really quite uncalled for, because the facts to be explained are of the same essential nature as those presented by remote oceanic islands, between which and the nearest continents no temperate land connection is postulated. In proportion to their limited area and extreme isolation, the Azores, St. Helena, the Galapagos, and the Sandwich Islands, each possess a fairly rich—the last a very rich-indigenous flora ; and the means which sufficed to stock them with a great variety of plants would probably suffice to transmit others from mountain-top to mountain-top in various parts of the globe. In the case of the Azores, we have large numbers of species identical with those of Europe, and others closely allied, forming an exactly parallel case to the species found on the various mountain summits which have been referred to. The distances from Madagascar to the South African mountains and to Kilimandjaro, and from the latter to Abyssinia, are no greater than from Spain to the Azores, while there are other equatorial mountains forming stepping-stones at about an equal distance to the Cameroons. Between Java and the Himalayas we have the lofty mountains of Sumatra and of North-western Burma, forming steps at about the same distance apart; while between Kini Balu and the Australian Alps we have the unexplored snow mountains of New Guinea, the Bellenden Ker mountains in Queensland, and the New England and Blue Mountains of New South Wales. Between Brazil and Bolivia the distances are no greater; while the unbroken range of mountains from Arctic America to Tierra-del-Fuego offers the greatest facilities for transmission, the partial gap between the lofty peak of Chiriqui and the high Andes of New Grenada being far less than from Spain to the Azores. Thus, whatever means have sufficed for stocking oceanic islands must have been to some extent effective in transmitting northern forms from mountain to mountain, across the equator, to the southern hemisphere; while for this latter form of dispersal there are special facilities, in the abundance of fresh and unoccupied surfaces always occurring in mountain regions, owing to avalanches, torrents, mountain-slides, and rock-falls, thus affording stations on which air-borne seeds may germinate and find a temporary home till driven out by the inroads of the indigenous vegetation. These temporary stations may be at much lower altitudes than the original habitat of the species, if other conditions are favourable. Alpine plants often descend into the valleys on glacial moraines, while some arctic species grow equally well on mountain summits and on the seashore. The distances above referred to between the loftier mountains may thus be greatly reduced by the occurrence of suitable conditions at lower altitudes, and the facilities for transmission by means of aerial currents proportionally increased. 1

Facts Explained by the Wind-Carriage of Seeds. But if we altogether reject aerial transmission of seeds for great distances, except by the agency of birds, it will be difficult, if not impossible, to account for the presence of so many identical species of plants on remote mountain summits, or for that “continuous current of vegetation” described by Sir Joseph Hooker as having apparently long existed from the northern to the southern hemisphere. It may be admitted that we can, possibly, account for the greater portion of the floras of remote oceanic islands by the agency of birds alone; because, when blown out to sea land-birds must reach some island

? For a fuller discussion of this subject, see my Island Life, chap. xxiii.

« AnteriorContinuar »