Imagens das páginas

the theory since thed within the lo

The Non-Heredity of Acquired Characters. Certain observations on the embryology of the lower animals are held to afford direct proof of this theory of heredity, but they are too technical to be made clear to ordinary readers. A logical result of the theory is the impossibility of the transmission of acquired characters, since the molecular structure of the germ-plasm is already determined within the embryo; and Weismann holds that there are no facts which really prove that acquired characters can be inherited, although their inheritance has, by most writers, been considered so probable as hardly to stand in need of direct proof.

We have already shown, in the earlier part of this chapter, that many instances of change, imputed to the inheritance of acquired variations, are really cases of selection; while the very fact that use implies usefulness renders it almost impossible to eliminate the action of selection in a state of nature. As regards mutilations, it is generally admitted that they are not hereditary, and there is ample evidence on this point. When it was the fashion to dock horses' tails, it was not found that horses were born with short tails; nor are Chinese women born with distorted feet; nor are any of the numerous forms of racial mutilation in man, which have in some cases been carried on for hundreds of generations, inherited. Nevertheless, a few cases of apparent inheritance of mutilations have been recorded, and these, if trustworthy, are difficulties in the way of the theory. The undoubted inheritance of disease is hardly a difficulty, because the predisposition to disease is a congenital, not an acquired character, and as such would be the subject of inheritance. The often-quoted case of a disease induced by mutilation being inherited (Brown-Sequard's epileptic guinea-pigs) has been discussed by Professor Weismann, and shown to be not conclusive. The mutilation itself -a section of certain nerves — was never inherited, but the resulting epilepsy, or a general state of weakness, deformity, or sores, was sometimes inherited. It is, however, possible that the mere injury introduced and encouraged the growth of certain microbes, which, spreading through the organism, sometimes reached the germ-cells, and thus transmitted a diseased condition to the offspring. Such a transference of microbes is believed to occur in syphilis and tuberculosis, and has been ascertained to occur in the case of the muscardine silkworm disease. 1

new forms. Again, in parthenogenetic females the complete apparatus for fertilisation remains unreduced ; but if these varied as do sexually produced animals, the organs referred to, being unused, would become rudimentary.

Even more important is the significance of the “polar bodies," as explained by Weismann in one of his Essays; since, if his interpretation of them be correct, variability is a necessary consequence of sexual generation.

1 Darwin's Animals and Plants, vol. ii. pp. 23, 24.

The Theory of Instinct. The theory now briefly outlined cannot be said to be proved, but it commends itself to many physiologists as being inherently probable, and as furnishing a good working hypothesis till displaced by a better. We cannot, therefore, accept any arguments against the agency of natural selection which are based upon the opposite and equally unproved theory that acquired characters are inherited ; and as this applies to the whole school of what may be termed NeoLamarckians, their speculations cease to have any weight.

The same remark applies to the popular theory of instincts as being inherited habits; though Darwin gave very little weight to this, but derived almost all instincts from spontaneous useful variations which, like other spontaneous variations, are of course inherited. At first sight it appears as if the acquired habits of our trained dogs-pointers, retrievers, etc.—are certainly inherited; but this need not be the case, because there must be some structural or psychical peculiarities, such as modifications in the attachments of muscles, increased delicacy of smell or sight, or peculiar likes and dislikes, which are inherited ; and from these, peculiar habits follow as a natural consequence, or are easily acquired. Now, as selection has been constantly at work in improving all our domestic animals, we have unconsciously modified the structure, while preserving only those animals which best served our purpose in their peculiar faculties, instincts, or habits.

1 In his essay on “Heredity,” Dr. Weismann discusses many other cases of supposed inheritance of acquired characters, and shows that they can all be explained in other ways. Shortsightedness among civilised nations, for example, is due partly to the absence of selection and consequent regression towards a mean, and partly to its individual production by constant reading.

So, vision, long Highly very high, their way: the insti

Much of the mystery of instinct arises from the persistent refusal to recognise the agency of imitation, memory, observation, and reason as often forming part of it. Yet there is ample evidence that such agency must be taken into account. Both Wilson and Leroy state that young birds build inferior nests to old ones, and the latter author observes that the best nests are made by birds whose young remain longest in the nest. So, migration is now well ascertained to be effected by means of vision, long flights being made on bright moonlight nights when the birds fly very high, while on cloudy nights they fly low, and then often lose their way. Thousands annually fly out to sea and perish, showing that the instinct to migrate is imperfect, and is not a good substitute for reason and observation.

Again, much of the perfection of instinct is due to the extreme severity of the selection during its development, any failure involving destruction. The chick which cannot break the eggshell, the caterpillar that fails to suspend itself properly or to spin a safe cocoon, the bees that lose their way or that fail to store honey, inevitably perish. So the birds that fail to feed and protect their young, or the butterflies that lay their eggs on the wrong food-plant, leave no offspring, and the race with imperfect instincts perishes. Now, during the long and very slow course of development of each organism, this rigid selection at every step of progress has led to the preservation of every detail of structure, faculty, or habit that has been necessary for the preservation of the race, and has thus gradually built up the various instincts which seem so marvellous to us, but which can yet be shown to be in many cases still imperfect. Here, as everywhere else in nature, we find comparative, not absolute perfection, with every gradation from what is clearly due to imitation or reason up to what seems to us perfect instinct—that in which a complex action is performed without any previous experience or instruction.

1 Weismann explains instinct on similar lines, and gives many interesting illustrations (see Essays on Heredity). He holds “that all instinct is entirely due to the operation of natural selection, and has its foundation, not upon inherited experiences, but upon variations of the germ.” Many interesting and difficult cases of instinct are discussed by Darwin in Chapter VIII of the Origin of Species, which should be read in connection with the above remarks.

Since this chapter was written my attention has been directed to Mr.

Concluding Remarks. Having now passed in review the more important of the recent objections to, or criticisms of, the theory of natural selection, we have arrived at the conclusion that in no one case have the writers in question been able materially to diminish its importance, or to show that any of the laws or forces to which they appeal can act otherwise than in strict subordination to it. The direct action of the environment as set forth by Mr. Herbert Spencer, Dr. Cope, and Dr. Karl Semper, even if we admit that its effects on the individual are transmitted by inheritance, are so small in comparison with the amount of spontaneous variation of every part of the organism that they must be quite overshadowed by the latter. And if such direct action may, in some cases, have initiated certain organs or outgrowths, these must from their very first beginnings have been subject to variation and natural selection, and their further development have been almost wholly due to these ever-present and powerful causes.

Francis Galton's Theory of Heredity (already referred to at p. 417) which was published thirteen years ago as an alternative for Darwin's theory of pangenesis.

Mr. Galton's theory, although it attracted little attention, appears to me to be substantially the same as that of Professor Weismann. Galton's “stirp” is Weismann's "germ-plasm.” Galton supposes the sexual elements in the offspring to be directly formed from the residue of the stirp not used up in the development of the body of the parent-Weismann's “ continuity of the germ-plasm.” Galton also draws many of the same conclusions from his theory. He maintains that characters acquired by the individual as the result of external influences cannot be inherited, unless such influences act directly on the reproductive elements—instancing the possible heredity of alcoholism, because the alcohol permeates the tissues and may reach the sexual elements. He discusses the supposed heredity of effects produced by use or disuse, and explains them much in the same manner as does Weismann. Galton is an anthropologist, and applies the theory, mainly, to explain the peculiarities of hereditary transmission in man, many of which peculiarities he discusses and elucidates. Weismann is a biologist, and is mostly concerned with the application of the theory to explain variation and instinct, and to the further development of the theory of evolution. He has worked it out more thoroughly, and has adduced embryological evidence in its support ; but the views of both writers are substantially the same, and their theories were arrived at quite independently. The names of Galton and Weismann should therefore be associated as discoverers of what may be considered (if finally established) the most important contribution to the evolution theory since the appearance of the Origin of Species.

The same remark applies to the views of Professor Geddes on the laws of growth which have determined certain essential features in the morphology of plants and animals. The attempt to substitute these laws for those of variation and natural selection has failed in cases where we can apply a definite test, as in that of the origin of spines on trees and shrubs ; while the extreme diversity of vegetable structure and form among the plants of the same country and of the same natural order, of itself affords a proof of the preponderating influence of variation and natural selection in keeping the many diverse forms in harmony with the highly complex and ever-changing environment.

Lastly, we have seen that Professor Weismann's theory of the continuity of the germ-plasm and the consequent nonheredity of acquired characters, while in perfect harmony with all the well-ascertained facts of heredity and development, adds greatly to the importance of natural selection as the one invariable and ever-present factor in all organic change, and that which can alone have produced the temporary fixity combined with the secular modification of species. While admitting, as Darwin always admitted, the co-operation of the fundamental laws of growth and variation, of correlation and heredity, in determining the direction of lines of variation or in the initiation of peculiar organs, we find that variation and natural selection are ever-present agencies, which take possession, as it were, of every minute change originated by these fundamental causes, check or favour their further development, or modify them in countless varied ways according to the varying needs of the organism. Whatever other causes have been at work, Natural Selection is supreme, to an extent which even Darwin himself hesitated to claim for it. The more we study it the more we are convinced of its overpoweriny importance, and the more confidently we claim, in Darwin's own words, that it “has been the most important, but not the exclusive, means of modification.”

« AnteriorContinuar »