Imagens das páginas
PDF
ePub

CHAPTER XII

THE GEOGRAPHICAL DISTRIBUTION OF ORGANISMS

The facts to be explained-The conditions which have determined distribution-The permanence of oceans-Oceanic and continental areas -Madagascar and New Zealand-The teachings of the thousandfathom line-The distribution of marsupials-The distribution of tapirs-Powers of dispersal as illustrated by insular organisms-Birds and insects at sea-Insects at great altitudes-The dispersal of plants -Dispersal of seeds by the wind-Mineral matter carried by the wind Objections to the theory of wind-dispersal answered-Explanation of north temperate plants in the southern hemisphere-No proof of glaciation in the tropics-Lower temperature not needed to explain the facts-Concluding remarks.

THE theory which we may now take as established-that all the existing forms of life have been derived from other forms by a natural process of descent with modification, and that this same process has been in action during past geological time—should enable us to give a rational account not only of the peculiarities of form and structure presented by animals and plants, but also of their grouping together in certain areas, and their general distribution over the earth's surface.

In the absence of any exact knowledge of the facts of distribution, a student of the theory of evolution might naturally anticipate that all groups of allied organisms would be found in the same region, and that, as he travelled farther and farther from any given centre, the forms of life would differ more and more from those which prevailed at the starting-point, till, in the remotest regions to which he could penetrate, he would find an entirely new assemblage of animals and plants, altogether unlike those with which he was

familiar. He would also anticipate that diversities of climate would always be associated with a corresponding diversity in the forms of life.

Now these anticipations are to a considerable extent justified. Remoteness on the earth's surface is usually an indication of diversity in the fauna and flora, while strongly contrasted climates are always accompanied by a considerable contrast in the forms of life. But this correspondence is by no means exact or proportionate, and the converse propositions are often quite untrue. Countries which are near to each other often differ radically in their animal and vegetable productions; while similarity of climate, together with moderate geographical proximity, are often accompanied by marked diversities in the prevailing forms of life. Again, while many groups of animals-genera, families, and sometimes even orders are confined to limited regions, most of the families, many genera, and even some species are found in every part of the earth. An enumeration of a few of these anomalies will better illustrate the nature of the problem we have to solve.

As examples of extreme diversity, notwithstanding geographical proximity, we may adduce Madagascar and Africa, whose animal and vegetable productions are far less alike than are those of Great Britain and Japan at the remotest extremities of the great northern continent; while an equal, or perhaps even a still greater, diversity exists between Australia and New Zealand. On the other hand, Northern Africa and South Europe, though separated by the Mediterranean Sea, have faunas and floras which do not differ from each other more than do the various countries of Europe. As a proof that similarity of climate and general adaptability have had but a small part in determining the forms of life in each country, we have the fact of the enormous increase of rabbits and pigs in Australia and New Zealand, of horses and cattle in South America, and of the common sparrow in North America, though in none of these cases are the animals natives of the countries in which they thrive so well. And lastly, in illustration of the fact that allied forms are not always found in adjacent regions, we have the tapirs, which are found only on opposite sides of the globe, in tropical America and the Malayan Islands; the camels of

the Asiatic deserts, whose nearest allies are the llamas and alpacas of the Andes; and the marsupials, only found in Australia and on the opposite side of the globe, in America. Yet, again, although mammalia may be said to be universally distributed over the globe, being found abundantly on all the continents and on a great many of the larger islands, yet they are entirely wanting in New Zealand, and in a considerable number of other islands which are, nevertheless, perfectly able to support them when introduced.

Now most of these difficulties can be solved by means of well-known geographical and geological facts. When the productions of remote countries resemble each other, there is almost always continuity of land with similarity of climate. between them. When adjacent countries differ greatly in their productions, we find them separated by a sea or strait whose great depth is an indication of its antiquity or permanence. When a group of animals inhabits two countries or regions separated by wide oceans, it is found that in past geological times the same group was much more widely distributed, and may have reached the countries it. inhabits from an intermediate region in which it is now extinct. We know, also, that countries now united by land were divided by arms of the sea at a not very remote epoch; while there is good reason to believe that others now entirely isolated by a broad expanse of sea were formerly united and formed a single land area. There is also another important factor to be taken account of in considering how animals and plants have acquired their present peculiarities of distribution, -changes of climate. We know that quite recently a glacial epoch extended over much of what are now the temperate regions of the northern hemisphere, and that consequently the organisms which inhabit those parts must be, comparatively speaking, recent immigrants from more southern lands. But it is a yet more important fact that, down to middle Tertiary times at all events, an equable temperate climate, with a luxuriant vegetation, extended to far within the arctic circle, over what are now barren wastes, covered for ten months of the year with snow and ice. The arctic zone has, therefore, been in past times capable of supporting almost all the forms of life of our temperate regions; and we

must take account of this condition of things whenever we have to speculate on the possible migrations of organisms between the old and new continents.

The Conditions which have determined Distribution.

When we endeavour to explain in detail the facts of the existing distribution of organic beings, we are confronted by several preliminary questions, upon the solution of which will depend our treatment of the phenomena presented to us. Upon the theory of descent which we have adopted, all the different species of a genus, as well as all the genera which compose a family or higher group, have descended from some common ancestor, and must therefore, at some remote epoch, have occupied the same area, from which their descendants have spread to the regions they now inhabit. In the numerous cases in which the same group now occupies countries separated by oceans or seas, by lofty mountain-chains, by wide deserts, or by inhospitable climates, we have to consider how the migration which must certainly have taken place has been effected. It is possible that during some portion of the time which has elapsed since the origin of the group the interposing barriers have not been in existence; or, on the other hand, the particular organisms we are dealing with may have. the power of overpassing the barriers, and thus reaching their present remote dwelling-places. As this is really the fundamental question of distribution on which the solution of all its more difficult problems depends, we have to inquire, in the first place, what is the nature of, and what are the limits to, the changes of the earth's surface, especially during the Tertiary and latter part of the Secondary periods, as it was during those periods that most of the existing types of the higher animals and plants came into existence; and, in the next place, what are the extreme limits of the powers of dispersal possessed by the chief groups of animals and plants. of animals and plants. We will first consider the question of barriers, more especially those formed by seas and oceans.

The Permanence of Oceans.

It was formerly a very general belief, even amongst geologists, that the great features of the earth's surface, no less than the smaller ones, were subject to continual mutations,

and that during the course of known geological time the continents and great oceans had again and again changed places with each other. Sir Charles Lyell, in the last edition of his Principles of Geology (1872), said: "Continents, therefore, although permanent for whole geological epochs, shift their positions entirely in the course of ages;" and this may be said to have been the orthodox opinion down to the very recent period when, by means of deep-sea soundings, the nature of the ocean bottom was made known. The first person to throw doubt on this view appears to have been the veteran American geologist, Professor Dana. In 1849, in the Report of Wilke's Exploring Expedition, he adduced the argument against a former continent in the Pacific during the Tertiary period, from the absence of all native quadrupeds. In 1856, in articles in the American Journal, he discussed the development of the American continent, and argued for its general permanence; and in his Manual of Geology in 1863 and later editions, the same views were more fully enforced and were latterly applied to all continents. Darwin, in his Journal of Researches, published in 1845, called attention to the fact that all the small islands far from land in the Pacific, Indian, and Atlantic Oceans are either of coralline or volcanic formation. He excepted, however, the Seychelles and St. Paul's rocks; but the former have since been shown to be no exception, as they consist entirely of coral rock; and although Darwin himself spent a few hours on St. Paul's rocks on his outward voyage in the Beagle, and believed he had found some portions of them to be of a "cherty," and others of a felspathic" nature, this also has been shown to be erroneous, and the careful examination of the rocks by the Abbé Renard clearly proves them to be wholly of volcanic origin.1 We have, therefore, at the present time, absolutely no exception whatever to the remarkable fact that all the oceanic islands of the globe are either of volcanic or coral formation; and there is, further, good reason to believe that those of the latter class in every case rest upon a volcanic foundation.

[ocr errors]

In his Origin of Species, Darwin further showed that no true oceanic island had any native mammals or batrachia

1 See A. Agassiz, Three Cruises of the Blake (Cambridge, Mass., 1888), vol. i. p. 127, footnote.

[ocr errors]
« AnteriorContinuar »