From Objects to Diagrams for Ranges of FunctorsSpringer Science & Business Media, 9 июл. 2011 г. - Всего страниц: 158 This work introduces tools, from the field of category theory, that make it possible to tackle until now unsolvable representation problems (determination of the range of a given functor). The basic idea is: if a functor lifts many objects, then it also lifts many (poset-indexed) diagrams. |
Содержание
1 Background | 1 |
2 Boolean Algebras That Are Scaled with Respect to a Poset | 35 |
3 The Condensate Lifting Lemma CLL | 51 |
4 Getting Larders from Congruence Lattices of FirstOrder Structures | 81 |
5 CongruencePermutable CongruencePreserving Extensions of Lattices | 117 |
List of Figures | 119 |
6 Larders from Von Neumann Regular Rings | 130 |
7 Discussion | 139 |
References | 143 |
148 | |
153 | |
157 | |
Другие издания - Просмотреть все
From Objects to Diagrams for Ranges of Functors Pierre Gillibert,Friedrich Wehrung Ограниченный просмотр - 2011 |
From Objects to Diagrams for Ranges of Functors Pierre Gillibert,Friedrich Wehrung Недоступно для просмотра - 2011 |
Часто встречающиеся слова и выражения
0)-homomorphisms 0)-semilattice algebraic lattice arity Armature Lemma assumption belongs Boolean spaces Boolp C*-algebras canonical projection CLL Lemma Clop cocone cofinal Conc Conc,r congruence lattice congruence-proper Corollary defined Definition denote double arrow element example exists a unique finite almost join-semilattice finite poset finite subset finitely presented first-order structure following result follows from Lemma full subcategory functor Furthermore Gillibert Hence holds homomorphism ideal-induced inclusion map indexed infinite cardinal isomorphism isotone join-semilattice with zero Lemma Lg(A lifter locally finite lower finite Metr modular lattice monic natural transformation nonempty norm-covering normal morphisms object P-indexed diagram P-normed P-scaled Boolean algebra poset problem projectability witness Proposition 4.2.3 prove pseudo join-semilattice quasivariety regular rings Rel(A resp ring homomorphisms Sect sectionally complemented semilattice semilattice-metric spaces small directed colimits statement of CLL surjective upper subset variety weakly Wehrung X-lifter X-small