Imagens das páginas
PDF
ePub

elevator muscles and elastic ligaments delegated to the performance of this function. The reaction of the air is therefore only one of the forces employed in elevating the wing; the others, as I shall show presently, are vital and vitomechanical in their nature. The falling downwards and forwards of the body when the wings are ascending also contribute to this result.

The Wing ascends when the Body descends, and vice versâ.— As the body of the insect, bat, and bird falls forwards in at curve when the wing ascends, and is elevated in a curve when the wing descends, it follows that the trunk of the animal is urged along a waved line, as represented at 1, 2, 3, 4, 5 of fig. 81, p. 157; the waved line a ce gi of the same figure giving the track made by the wing. I have distinctly seen the alternate rise and fall of the body and wing when watching the flight of the gull from the stern of a steam-boat.

The direction of the stroke in the insect, as has been already explained, is much more horizontal than in the bat or bird (compare figs. 82 and 83 with figs. 64, 65, and 66, p. 139). In either case, however, the down stroke must be delivered in a more or less forward direction. This is necessary for support and propulsion. A horizontal to-and-fro movement will elevate, and an up-and-down vertical movement propel, but an oblique forward motion is requisite for progressive flight.

In all wings, whatever their position during the intervals of rest, and whether in one piece or in many, this feature is to be observed in flight. The wings are slewed downwards and forwards, i.e. they are carried more or less in the direction of the head during their descent, and reversed or carried in an opposite direction during their ascent. In stating that the wings are carried away from the head during the back stroke, I wish it to be understood that they do not therefore necessarily travel backwards in space when the insect is flying forwards. On the contrary, the wings, as a rule, move forward in curves, both during the down and up strokes. The fact is, that the wings at their roots are hinged and geared to the trunk so loosely, that the body is free to oscillate in a forward or backward direction, or in an up, down, or oblique direction. As a consequence of this freedom of movement,

and as a consequence likewise of the speed at which the insect is travelling, the wings during the back stroke are for the most part actually travelling forwards. This is accounted for by the fact, that the body falls downwards and forwards in a curve during the up or return stroke of the wings, and because the horizontal speed attained by the body is as a rule so much greater than that attained by the wings, that the latter are never allowed time to travel backward, the lesser movement being as it were swallowed up by the greater. For a similar reason, the passenger of a steam-ship may travel rapidly in the direction of the stern of the vessel, and yet be carried forward in space, the ship sailing much quicker than he can walk. While the wing is descending, it is rotating upon its root as a centre (short axis). It is also, and this is a most important point, rotating upon its anterior margin (long axis), in such a manner as to cause the several parts of the wing to assume various angles of inclination with the horizon.

Figs. 84 and 85 supply the necessary illustration.

[merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][ocr errors][merged small]

In flexion, as a rule, the under surface of the wing (fig. 84 a) is arranged in the same plane with the body, both being in a line with or making a slight angle with the horizon (x x).1

1 It happens occasionally in insects that the posterior margin of the wing is on a higher level than the anterior one towards the termination of the up stroke. In such cases the posterior margin is suddenly rotated in a downward

When the wing is made to descend, it gradually, in virtue of its simultaneously rotating upon its long and short axes, makes a certain angle with the horizon as represented at b. The angle is increased at the termination of the down stroke as shown at c, so that the wing, particularly its posterior margin, during its descent (4), is screwed or crushed down upon the air with its concave or biting surface directed forwards and towards the earth. The same phenomena are indicated at a b c of fig. 85, but in this figure the wing is represented as travelling more decidedly forwards during its descent, and this is characteristic of the down stroke of the insect's wing-the stroke in the insect being delivered in a very oblique and more or less horizontal direction (figs. 64, 65, and 66, p. 139; fig. 71, p. 144). The forward travel of the wing during its descent has the effect of diminishing the angles made by the under surface of the wing with the horizon. Compare b c d of fig. 85 with the same letters of fig. 84.

[merged small][ocr errors][merged small]

At fig. 88 (p. 166) the angles for a similar reason are still further diminished. This figure (88) gives a very accurate idea of the kite-like action of the wing both during its descent and ascent.

The downward screwing of the posterior margin of the and forward direction at the beginning of the down stroke-the downward and forward rotation securing additional elevating power for the wing. The posterior margin of the wing in bats and birds, unless they are flying downwards, never rises above the anterior one, either during the up or down stroke.

L

wing during the down stroke is well seen in the dragon-fly, represented at fig. 86, p. 161.

Here the arrows rs indicate the range of the wing. At the beginning of the down stroke the upper or dorsal surface of the wing (i d f) is inclined slightly upwards and forwards. As the wing descends the posterior margin (if) twists and rotates round the anterior margin (i d), and greatly increases the angle of inclination as seen at ij, gh. This rotation of the posterior margin (ij) round the anterior margin (g h) has the effect of causing the different portions of the under surface of the wing to assume various angles of inclination with the horizon, the wing attacking the air like a boy's kite. The angles are greatest towards the root of the wing and least towards the tip. They accommodate themselves to the speed at which the different parts of the wing travel—a small angle with a high speed giving the same amount of buoying power as a larger angle with a diminished speed. The screwing of the under surface of the wing (particularly the posterior margin) in a downward direction during the down stroke is necessary to insure the necessary upward recoil; the wing being made to swing downwards and forwards pendulum fashion, for the purpose of elevating the body, which it does by acting upon the air as a long lever, and after the manner of a kite. During the down stroke the wing is active, the air passive. In other words, the wing is depressed by a purely vital act. The down stroke is readily explained, and its results upon the body obvious. The real difficulty begins with the up or return stroke. If the wing was simply to travel in an upward and backward direction from c to a of fig. 84, p. 160, it is evident that it would experience much resistance from the superimposed air, and thus the advantages secured by the descent of the wing would be lost. What really happens is this. The wing does not travel upwards and backwards in the direction cba of fig. 84 (the body, be it remembered, is advancing) but upwards and forwards in the direction c d e f g. This is brought about in the following manner. The wing is at right angles to the horizon (xx) at C. It is therefore caught by the air at the point (2) because of the more or less horizontal travel of the body; the elastic

ligaments and other structures combined with the resistance experienced from the air rotating the posterior or thin margin of the pinion in an upward direction, as shown at defg and dfg of figs. 84 and 85, p. 160. The wing by this partly vital and partly mechanical arrangement is rotated off the wind in such a manner as to keep its dorsal or nonbiting surface directed upwards, while its concave or biting surface is directed downwards. The wing, in short, has its planes so arranged, and its angles so adjusted to the speed at which it is travelling, that it darts up a gradient like a true kite, as shown at c d e f g of figs. 84 and 85, p. 160, or ghi of fig. 88, p. 166. The wing consequently elevates and propels during its ascent as well as during its descent. It is, in fact, a kite during both the down and up strokes. The ascent of the wing is greatly assisted by the forward travel, and downward and forward fall of the body. This view will be readily understood by supposing, what is really the case, that the wing is more or less fixed by the air in space at the point indicated by 2 of figs. 84 and 85, p. 160; the body, the instant the wing is fixed, falling downwards and forwards in a curve, which, of course, is equivalent to placing the wing above, and, so to speak, behind the volant animal-in other words, to elevating the wing preparatory to a second down stroke, as seen at g of the figures referred to (figs. 84 and 85). The ascent and descent of the wing is always very much greater than that of the body, from the fact of the pinion acting as a long lever. The peculiarity of the wing consists in its being a flexible lever which acts upon yielding fulcra (the air), the body participating in, and to a certain extent perpetuating, the movements originally produced

b

n

FIG. 87.

by the pinion. The part which the body performs in flight is indicated at fig. 87. At a the body is depressed, the wing being elevated and ready to make the down stroke at b. The

« AnteriorContinuar »